احصاء - ماجستير

Permanent URI for this collectionhttps://repository.neelain.edu.sd/handle/123456789/624

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Representation Theory of Finite Group with Some Applications
    (AL-Neelain University, 16) Hiba NasrEldin Mohamed
    This research aims to study the representation theory as a tool that transform abstract groups to groups of linear transformations easy to deal with. This research depends on groups and fields theory and vector spaces to construct the structure of these spaces. We studied vector spaces because of structures. In particular we dealt with finite groups and we gave some applications.
  • Thumbnail Image
    Item
    The Telegraph Equation by Double Laplace Transform And Adomian Decomposition Methods
    (Al-Neelain University, 2022-03) Nosiba Mohammed Alsadig Mohammed
    Abstract In this paper, we talked about some basic concepts in fractional calculus, and we talked about the Laplace transform of fractional calculus and double Laplace transform of fractional. We also applied the fractional double Laplace and double Laplace adomian decomposition method to solve the fractional telegraph equation. الخلاصة في هذا البحث اسسنا بعض المفاهيم الاساسية في الحسبان الكسري، وحددنا تحويل لابلاس الكسري والتحويل الثنائي للابلاس الكسري. كما قمنا بتطبيق التحويل الثنائي للابلاس الكسري والتحويل الثنائي للابلاس أدوميان الكسري في حل معادلة التلغراف الكسرية.
  • Thumbnail Image
    Item
    Comparison Between Modified and Laplace Homotopy Perturbation Method for Heat Equation and Burger Equation
    (Al-Neelain University, 2022-03) ANFAL ATTALLAH SALIM HAMDAN
    Abstract In this research, we deal with fractional calculus and use the Adomian Decomposition method, Homotopy perturbation method, modified Homotopy perturbation method and Laplace Homotopy Perturbation method. to find approximate solutions of linear and nonlinear partial differential equations such as the Heat equation and Burger equation. المستخلص تناولنا في هذا البحث الحسبان الكسري و استخدمنا طريقه تفكيك أدوميان وطريقه اضطراب الهوموتبي وطريقه اضطراب الهوموتبي المعدلة وطريقه اضطراب الهوموتبي لابلاس لإيجاد حلول تقريبية للمعادلات التفاضلية الجزئية الخطية وغير الخطية كمعادلة الحرارة ومعادلة بيرجر.
  • Thumbnail Image
    Item
    Analysis of a Mathematical Model of Malaria Disease
    (2018-01) Mohamed Kamalaldin Mohamed Babekir
    Abstract Malaria is one of the deadliest diseases around the world causing the death of around 429,000 person in the year 2015 only. This led the scientists around the world to work hard to fight against the disease. In this study, we analyzed the mathematical model of malaria transmission. We calculated R0 which could determine the future of the disease. We examined two sets of parameters, low prevalence and high prevalence and we calculated the effect rate of all parameters using sensitive analysis. Numerical simulations are carried out to confirm the analytical results and explore the possible behavior of the formulated model.
  • Thumbnail Image
    Item
    Mathematical Analysis of a Compartmental Model for Malaria
    (2018-01) Shahenaz Osman Khalifa Mohammed
    Abstract In this thesis a mathematical model of malaria transmission has been studied, in which we not only considered the recovered humans return to the susceptible class, but also considered the recovered humans return to the infectious class. We explained some historical and biological concepts of the disease. Also we presented conditions for positivity and boundedness of solution. The existence of the disease-free equilibrium and endemic equilibrium points has been proved. The stability of equilibrium points are determined by next generation matrix method. The analytical results are explained numerically. From these results it is found that if we want control and eradicate the malaria, it is very necessary to decrease the relapse rate and increase the recovery rate.
  • Thumbnail Image
    Item
    Mathematical Model for Cholera Epidemic with Quarantined Sub-Infected Population
    (2017) Ahmed Adam Younis Ahmed
    Abstract Cholera is an epidemic disease caused by the bacteria Vibrio cholera. In this thesis, nonlinear mathematical models for spread of an infectious epidemic cholera disease with carriers in environment and transmission dynamics are developed and analysed. It is assumed that all susceptible are a ected by carrier population density. These models illustrate how population interact with each other depending on certain rates. By varying some parameters the models can be studied. This thesis analyzes the mathematical models created and shows the implementation of the numerical method Runge-Kutta of order four. The numerical simulations show that for certain parameter values
  • Thumbnail Image
    Item
    Applications of Spectral Homotopy Perturbation Method on a Steady Tow-dimensional Hydro Magnetic Flow
    (2016) Sahwa Ahmed Elabaid Ahmed
    Abstract The purpose of this research is to discuss the flow of forced convection model over a flat plate. The governing partial differential equations are transformed into ordinary differential equations using suitable transformations. The resulting equations will solv using a recent semi-numerical scheme known as the Spectral Homotopy Perturbation Method (S-HPM). A comparison between the obtained results with different orders has been included. The accuracy and convergence of the solution will be tested .
  • Thumbnail Image
    Item
    Application of Spectral Adomian Decomposition Method on Heat and Mass Transfer of Boundary Layer
    (Al-Neelain University, 2015) Salma Hassan Mohammed Hassan
    Abstract In this study, we proposed numerical method for solving non-linear differential equations. The method is hybired of spectral and Adomian decomposition method. The method will applied on the problem of convection heat and mass transfer, the convergence of the method tested and displayed on tables. The velocity, temperature and concentration have been obtained and discussed for various physical parameter.
  • Thumbnail Image
    Item
    D'Alembert Solution For Wave Equation
    (Al-Neelain University, 2010) Abd Alfatah Mohammed Osman Abasher
    Abstract In this research , introduction to wave equation , two new proofs and extensions are proposed . at the same time ,two equivalent equation systems for the wave equation and the corresponding initial value problems are advanced and proved by using the characteristics concepts and methods . and some interesting discussions of the initial –boundary value problems (IBVP) and the different cases for at the boundary point . 5 خلاصة البحث: تطرقنا فى ھذا البحث لمقدمة عن الموجة ، والتوصل للمعادلة التفاضلیة التى تصف حركة الموجة والشروط الابتدائیة لھا من ثم حل ھذه المعادلة التفاضلیة باستخدام اسلوب دالمبرت والذى اعتمدنا فیھ على طریقة تحویل ھذه المعادلة الى نظامین من أنظمة المعادلات التفاضلیة تكافئ ھذه المعادلة . وتطرقنا أیضا لحل دالمبرت لمسائل القیم الابتدائیة والحدیة ، سلوك الموجة عند النقاط الحدیة ، من حیث انھا ثابتة فى الطرفین ، او ثابتة فى طرف ومتحركة فى الاخر أو متحركة فى الطرفین ، تصف ھذه الحركة فى كل حالة . mapleوأخیرا برامج بلغة