احصاء - ماجستير

Permanent URI for this collectionhttps://repository.neelain.edu.sd/handle/123456789/624

Browse

Search Results

Now showing 1 - 10 of 110
  • Thumbnail Image
    Item
    Representation Theory of Finite Group with Some Applications
    (AL-Neelain University, 16) Hiba NasrEldin Mohamed
    This research aims to study the representation theory as a tool that transform abstract groups to groups of linear transformations easy to deal with. This research depends on groups and fields theory and vector spaces to construct the structure of these spaces. We studied vector spaces because of structures. In particular we dealt with finite groups and we gave some applications.
  • Thumbnail Image
    Item
    The Telegraph Equation by Double Laplace Transform And Adomian Decomposition Methods
    (Al-Neelain University, 2022-03) Nosiba Mohammed Alsadig Mohammed
    Abstract In this paper, we talked about some basic concepts in fractional calculus, and we talked about the Laplace transform of fractional calculus and double Laplace transform of fractional. We also applied the fractional double Laplace and double Laplace adomian decomposition method to solve the fractional telegraph equation. الخلاصة في هذا البحث اسسنا بعض المفاهيم الاساسية في الحسبان الكسري، وحددنا تحويل لابلاس الكسري والتحويل الثنائي للابلاس الكسري. كما قمنا بتطبيق التحويل الثنائي للابلاس الكسري والتحويل الثنائي للابلاس أدوميان الكسري في حل معادلة التلغراف الكسرية.
  • Thumbnail Image
    Item
    Comparison Between Modified and Laplace Homotopy Perturbation Method for Heat Equation and Burger Equation
    (Al-Neelain University, 2022-03) ANFAL ATTALLAH SALIM HAMDAN
    Abstract In this research, we deal with fractional calculus and use the Adomian Decomposition method, Homotopy perturbation method, modified Homotopy perturbation method and Laplace Homotopy Perturbation method. to find approximate solutions of linear and nonlinear partial differential equations such as the Heat equation and Burger equation. المستخلص تناولنا في هذا البحث الحسبان الكسري و استخدمنا طريقه تفكيك أدوميان وطريقه اضطراب الهوموتبي وطريقه اضطراب الهوموتبي المعدلة وطريقه اضطراب الهوموتبي لابلاس لإيجاد حلول تقريبية للمعادلات التفاضلية الجزئية الخطية وغير الخطية كمعادلة الحرارة ومعادلة بيرجر.
  • Thumbnail Image
    Item
    SPINORS AND LIE ALGEBRAS WITH APPLICATIONS TO PHYSICAL FIELDS ALNEELAIN UNIVERSITY
    (جامعة النيلين, 2018) Reem Abdalgadir Abdalla
    Abstract The purpose of this research is to introduce concept of Lie group and Lie algebra in addition to some theories and examples. Well as some applications on Lie algebra In particular we are concerned with physical applications; we studied elements of particle physics and gravity. We utilized symmetry concepts, in terms of Lie algebra, in order to classify elementary particles. We also used the symmetry properties to study the unifications problem. المستخلص كان القصد من هذا البحث اعطاء مقدمة عن مفهوم الـ (Lie algebra) بالإضافة الى بعض الأمثلة و النظريات ,و تطبيق عمليات الـ (Lie algebra) و بالأخص العمليات الفيزيائية . كذلك درسنا الجزيئات الأولية و الجاذبية , و استخدمنا مفهوم التشابه بواسطة الـ (Lie algebra) و نفنا الجزيئات الأولية , و أستخدمنا خصائص التشابه بدراسة مشكلة التوحيد .
  • Thumbnail Image
    Item
    Mathematical Analysis of a Model for Tuberculosis Transmission Under Treatment and Quarantine
    (Neelain University, 2018) Samira Abdalaziz Hamid Fadul
    Abstract In this study, historical remarks about Tuberculosis epidemic disease, treatment strategies with quarantine has been briefly outlined. We studied two models for Tuberculosis with different treatment strategies with and without quarantine. We presented conditions for positivity and boundedness of solutions for both models. Furthermore, we proved the existence of disease-free equilibrium and endemic equilibrium, and we gave conditions for which these equilibrium are stable. We presented some numerical simulation to investigate effects of quarantine on system dynamics.
  • Thumbnail Image
    Item
    Mathematical Analysis of Transmission Dynamics of HIV/TB Co-Infection in the Presence of Treatment
    (Neelain University, 2018) Amani Abdalkreem Nogdalla Abdalkreem
    Abstract In this study we analyze a mathematical model for the HIV and TB co-infection for different treatment strategies. We analyze the TB and HIV/AIDS sub-models, we presented conditions for positivity and boundedness of solution. The HIV-only model is shown to have asymptotically stable equilibrium and we established conditions of the existence of the endemic equilibrium in terms of the reproduction number associated with the disease-free equilibrium. The TB-only model shows behavior of backward bifurcation, where the stable disease-free equilibrium exists with a stable endemic equilibrium when the associated reproduction number. We further analyze the full HIV/TB model to incorporate the treatment to the both diseases. A numerical simulation of the models is performed to investigate the effect certain parameters on the spread of the diseases.
  • Thumbnail Image
    Item
    Applications of the Homotopy Perturbation Method and Sumudu Transform of the Linear and Nonlinear Differential Equations
    (2018) Sana Hassan Magboul Ahmed
    Abstract This study is mainly focusing on the application of the homotopy perturbation method and Sumudu transform of the linear and nonlinear differential equations. It has established some defnitions and properties of homotopy perturbation method and Sumudu transform. The study combines the homotopy perturbation method and Sumudu transform. Consequently, it gives the solution in series form and approximates components, and _nds the exact solution. Then, it is applied to solve linear and nonlinear differential equations . Finally, the solutions of linear and nonlinear differential equations by this method, and the other methods will be compared. الخلاصة تتمركز هذه الدراسة مجملا في تطبيق طريقة ارتجاج الهموتوبيا وتحويل سمودو في حل المعادلات التفاضلية الخطية وغير الخطية . ستقوم الدراسة بتاسيس بعض التعريفات والخصائص بالنسبة لطريقة الارتجاج الهموتوبيا وتحويل سمودو.قامت الدراسة بدمج طريقة الارتجاج الهموتوبيا وتحويل سمودو. مما ادى الي ايجاد الحل فى شكل متسلسلة وتقريب المكونات لايجاد الحل التام. من ثم طبقت الدراسة لحل المعادلات التفاضلية الخطية وغير الخطية. واخيرا تمت مقارنة حلول المعادلات التفاضلية الخطية وغير الخطية بطرق اخرى.
  • Thumbnail Image
    Item
    تحليل أثر استعمال الصمغ في حفظ بيض الدواجن عند درجات حرارة مختلفة
    (2006) امانى حسين ضو البيت
    Abstract This research followed an analytical methodology in the analysis of data concerning the experiment of using gum in the preservation of some poultry eggs at different degrees of temperature, in which detailed description of data was carried out to explain the independent variables and variables associated with them, the appropriate design for analysis and how to use it; and also the explanation of factorial experiment with two factors and two levels on the research data, The Complete Randomized Design (CRD) was applied . The data was put in tables that are suitable for manual analysis; and lastly the data was analyzed using the computer programme SPSS, and knowledge of the effect’ of each of gum, temperature degree and overlapping between them in the preservation of poultry eggs . The results were discussed and action was taken about them .
  • Thumbnail Image
    Item
    التحليل الاحصائي لوفيات حوادث المرور في ولاية الخرطوم للفترة من 1993 -2002م
    (2006) مي صلاح الدين محمد شقلاوي
    ABSTRACT Sudan generally faces several and variant problem , among these traffic accidents in the state of Khartoum. This problem has become very critical due to several reasons. Data of this study has been collected of the concerned sources taken out of a selected group of variables, which have direct impacts upon traffic accidents. This data has been analized through linear pattern multi slope analysis. That is because it is considered the suitable approach if we want to investigate into effects upon the dependent variable to a group of in dependent variables at acknowledge point of time. This study focuses generally upon factors that affect traffic accidents between 1993-2002. Analysis has disclosed the high significances of pattern and its ability as to interpret changes upon the dependent variable .yet , SPSS , with step wise method its reject the three dependent variables : the second one is mini bus , the third is buses and the fifth is the tax ,these have little effects upon the dependent variable , and accept the first one is the private vehicles and fourth one is boxes . In the light of the analized variables, researcher recommend state interference in controlling and reducing car import process That’s beside controlling car liecence and drivers liecence and pedestrian awareness.