Measuring Performance Quality of Art2 & Fuzzy-Art2 Algorithms in Student Knowledge Modelling

dc.contributor.authorأ.ياسر نصر الدين السيد
dc.contributor.authorالدكتور/ مدثر ادم ابراهيم النور
dc.contributor.authorالدكتور/ هيثم هاشم قمر الدين
dc.contributor.authorالبرفيسور/السماني عبد المطلب أحمد
dc.date.accessioned2018-06-13T20:06:03Z
dc.date.available2018-06-13T20:06:03Z
dc.date.issued2019-05-15
dc.description.abstractThis paper handle the basic structure of the student model used within learning management systems to generate intelligent and adaptive courses using some neural network algorithms, The paper also focuses on how to modelling cognitive cases for Elneelain university students for each goal or concept of education within any subject using the Art2 and Fuzzy-art2 in student records (input vectors) and to classify student records into six varieties: very weak, weak, medium, good, very good and excellent. The paper also focuses on measuring the performance quality of each algorithm using the F-measure standard to choose the most appropriate time and accuracy algorithm to be used consistently within learning management systems.en_US
dc.identifier.issn1858-6228
dc.identifier.urihttp://hdl.handle.net/123456789/12015
dc.publisherجامعة النيلين - مجلة الدراسات العلياen_US
dc.titleMeasuring Performance Quality of Art2 & Fuzzy-Art2 Algorithms in Student Knowledge Modellingen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
42-1.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: