Applications of Finite Element Method on Beams
dc.contributor.author | Eman Jamal-Aldeen Alkhair Altahir | |
dc.date.accessioned | 2017-08-01T10:27:57Z | |
dc.date.available | 2017-08-01T10:27:57Z | |
dc.date.issued | 2015 | |
dc.description.abstract | مستلخص طریقة العناصر المنتھیة ھي عرض بطریقة متغایره لحل المعادلھ التفاضلیھ . نضع فیھا المسألھ المستمره في cjj ،الدالھ التقریبیھ شكل معادلھ تفاضلیھ مكافئة لصیغھ التغایر، ویفترض الحل في صورة تركیب خطي، ھي j . البارمتیرات cj تحدد باستخدام صیغة التغایر . طریقة العناصر المنتھیھ تحسن تقنیھ النظام للدالھ التقریبیھ لمجال بسیط مركب ھندسیا . في طریقة العناصر المنتھیة، الدالھ التقریبیھ ھي كثیرة حدود (كثیره الحدود تعرف لكل مجال وتسمي بالعنصر) Abstract The finite element method is introduced as a variationaly based technique of solving differential equations. A continuous problem described by a differential equations is put into an equivalent variational from, and the approximate solution is assumed to be a linear combination , Pcjφj , of approximation function φj . The parameters cj a determined using the associated varitional form. The finite element method provides a systematic technique for deriving the approximation function for simple subregions by which a geometrically complex region can be represented. In the finite element method, the approximation function are piecewise polynomials (i.e, polynomials that are defined only on a subregion, called an element) | en_US |
dc.description.sponsorship | Dr. Yassir Daoud Mohammed Daoud | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/4524 | |
dc.publisher | Al-Neelain University | en_US |
dc.subject | الرياضيات | en_US |
dc.subject | statistics | en_US |
dc.subject | differential equations. | en_US |
dc.title | Applications of Finite Element Method on Beams | en_US |