The THEORY OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS
Files
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Neelain University
Abstract
الخلاصة
المعادلات التفاضلية الجزئية مهمة جداً في نمذجة الظواهر الفيزيائية وتصف الإختلافات التي تكون في سلسلة وتعبر عنها الدالة التفاضلية ومشتقاتها الجزئية. من الدرجة الأولى وتصنيفها وتفردها. وقمنا بمعالجة مسائل كوشي للمعادلات الزائدية وحل بعض المسائل وثم طبقنا على المعادلات التي تتعلق بمعادلات الموجة. وقمنا بتنفيذ الحل العددي للمعادلات التفاضلية من الدرجة الأولى.
Abstract
Partial differential equation are very important in modeling physical phenomena.
They describe variation, which are smooth and expressed by differentiable functions and their partial derivatives.
In this work we considered first order partial differential equations, their classifications and the uniqueness and existence problems.
In particular, we have treated Cauchy problems for hyperbolic equation and solved some of their problems.
This has been also applied to wave propagation in addition to this numerical solution of first order differential equations have been investigated for the characteristics formulation.
Description
Thesis Presented as a Partial Fulfillment for
MASTER OF SCIENCE IN MATHEMATICS
in the Department of Mathematics
Keywords
DIFFERENTIAL EQUATIONS