The THEORY OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Neelain University

Abstract

الخلاصة المعادلات التفاضلية الجزئية مهمة جداً في نمذجة الظواهر الفيزيائية وتصف الإختلافات التي تكون في سلسلة وتعبر عنها الدالة التفاضلية ومشتقاتها الجزئية. من الدرجة الأولى وتصنيفها وتفردها. وقمنا بمعالجة مسائل كوشي للمعادلات الزائدية وحل بعض المسائل وثم طبقنا على المعادلات التي تتعلق بمعادلات الموجة. وقمنا بتنفيذ الحل العددي للمعادلات التفاضلية من الدرجة الأولى. Abstract Partial differential equation are very important in modeling physical phenomena. They describe variation, which are smooth and expressed by differentiable functions and their partial derivatives. In this work we considered first order partial differential equations, their classifications and the uniqueness and existence problems. In particular, we have treated Cauchy problems for hyperbolic equation and solved some of their problems. This has been also applied to wave propagation in addition to this numerical solution of first order differential equations have been investigated for the characteristics formulation.

Description

Thesis Presented as a Partial Fulfillment for MASTER OF SCIENCE IN MATHEMATICS in the Department of Mathematics

Keywords

DIFFERENTIAL EQUATIONS

Citation

Endorsement

Review

Supplemented By

Referenced By