Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/13596
Title: Geometrical Reformulation of some Equations of Fluid Mechanics
Authors: Mansour Hassan Mansour
Keywords: Fluid Mechanics
Issue Date: 2015
Publisher: Neelain University
Abstract: Abstract The aim of this thesis is to explain some of the connections between fluid mechanics and differential geometry and to shed light on formulation of classical fluid mechanics in a differential geometric language. The thesis presents a reformulation of some of the most basic entities and equations of fluid mechanics, the continuity equation and the momentum equation of motion, in a modern differential geometric language using calculus of exterior differential forms on manifold (exterior calculus). Also, the study investigates the integrability of some fluid problems from geometrical perspective, with particular attention to the Eulefequations of motion.
Description: A thesis Submitted for the Degree of PhD In Mathematics
URI: http://hdl.handle.net/123456789/13596
Appears in Collections:PHD theses : Statistics

Files in This Item:
File Description SizeFormat 
منصور.pdf2.97 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.