The Well Ordering Principle

Well Ordering principle
Every nonempty set of nonnegative integers has a least element.

Familiar? Now you mention it, Yes.
Obvious? Yes.
Trivial? Yes. But watch out:

Every nonempty set of nonnegative rationals has a least element.

NO!

Well Ordering Principle Proofs
To prove \(\forall n \in \mathbb{N}. P(n) \) using WOP:
• define set of counterexamples
 \[C := \{ n \in \mathbb{N} \mid \text{NOT } P(n) \} \]
• assume \(C \) is not empty. By WOP, have minimum element \(m \in C \)
• Reach a contradiction somehow ...
 usually by finding \(c \in C \) with \(c < m \)

Well Ordered Postage
available stamps: 5¢ 3¢

Thm: Get any amount \(n \geq 8¢ \)
Prove by WOP. Suppose not.
Let \(m \) be least counterexample:
if \(m > n \geq 8 \), can get \(n¢ \).
Well Ordered Postage

\[m > 8: \]
\[m > 9: \]
\[m > 10: \]

Well Ordered Postage

So \(m \geq 11 \). Now \(m > m-3 \geq 8 \) so can get \(m-3\$ \). But

\[\text{contradiction!} \]

Geometric sums

\[1 + r + r^2 + r^3 + \ldots + r^n = \frac{r^{n+1} - 1}{r - 1} \]

Proof by WOP. Let \(m \) be smallest \(n \) with \(\neq \). But = for \(n = 0, \) so \(m > 0, \) and

\[1 + r + r^2 + r^3 + \ldots + r^{m-1} = \frac{r^m - 1}{r - 1} \]

Geometric sums

\[1 + r + r^2 + r^3 + \ldots + r^{m-1} = \frac{r^m - 1}{r - 1} \]

add \(r^m \) to both sides

\[\text{LHS} = 1 + r + r^2 + r^3 + \ldots + r^{m-1} + r^m \]
\[\text{RHS} = \frac{r^m - 1}{r - 1} + \frac{r^{m+1} - r^m}{r - 1} = \frac{r^{m+1} - 1}{r - 1} \]

so = at \(m \), contradicting \(\neq \): there is no counterexample.

Team Problems

Problems 1–3