In-Class Problems Week 8, Wed.

Problem 1. (a) Use the Pulverizer to find the inverse of 13 modulo 23 in the range \(\{1, \ldots, 22\} \).

(b) Use Fermat’s theorem to find the inverse of 13 modulo 23 in the range \(\{1, \ldots, 22\} \).

Problem 2. (a) Why is a number written in decimal evenly divisible by 9 if and only if the sum of its digits is a multiple of 9? Hint: \(10 \equiv 1 \pmod{9} \).

(b) Take a big number, such as 37273761261. Sum the digits, where every other one is negated:

\[
3 + (-7) + 2 + (-7) + 3 + (-7) + 6 + (-1) + 2 + (-6) + 1 = -11
\]

Explain why the original number is a multiple of 11 if and only if this sum is a multiple of 11.

Problem 3.
The following properties of equivalence mod \(n \) follow directly from its definition and simple properties of divisibility. See if you can prove them without looking up the proofs in the text.

(a) If \(a \equiv b \pmod{n} \), then \(ac \equiv bc \pmod{n} \).

(b) If \(a \equiv b \pmod{n} \) and \(b \equiv c \pmod{n} \), then \(a \equiv c \pmod{n} \).

(c) If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(ac \equiv bd \pmod{n} \).

(d) \(\text{rem}(a,n) \equiv a \pmod{n} \).