Recursive Definitions & Structural Induction

Recursive Definitions

Define something in terms of a simpler version of the same thing:

- **Base case(s)** that don't depend on anything else.
- **Constructor case(s)** that depend on simpler cases.

Matched Paren Strings, \(M \)

- **Set of strings**, \(M \subseteq \{ \}, []^* \)
 - **Base:** \(\lambda \in M \),
 - (the empty string)
 - **Constructor:**
 - If \(s, t \in M \), then
 \[
 [s \text{]} t \in M
 \]

Strings in \(M \)

\[
\begin{align*}
[&] & s = \lambda & t = \lambda \\
[] & & s = [] & t = [] \\
[] & & s = \lambda & t = [] \\
[[]] & & s = [] & t = [] \\
[[]] & & s = [] & t = [] \\
[[[]]] & & s = [[]] & t = \lambda \\
& & & \\
& & &
\end{align*}
\]

Not in \(M \)

- Strings starting with \([\) are not in \(M \) because
 - \(\lambda \) does not start with \([\)
 - \([s \text{]} t \) does not start with \([\)

And everything in \(M \) arises in one of these two ways

Matched Paren Strings, \(M \)

- **Set of strings**, \(M \subseteq \{ \}, []^* \)
 - **Base:** \(\lambda \in M \),
 - **Constructor:** If \(s, t \in M \), then \([s \text{]} t \in M \)

That's all

Extremal Clause (Implicit part of definition)
Structural Induction

To prove $P(x)$ holds for all x in recursively defined set R, prove
• $P(b)$ for each base case $b \in R$
• $P(c(x))$ for each constructor, c, assuming ind. hyp. $P(x)$

Matched Paren Strings M

Lemma: Every s in M has the same number of $)$'s and [$'s.

Proof by structural induction on the definition of M

Lemma: Every s in M has the same number of $)$'s and [$'s.

Let $EQ ::= \{\text{strings with same number of } \}$

Lemma (restated): $M \subseteq EQ$

Construct step: $s = [r]t$
can assume $P(r)$ and $P(t)$

$\#)$ in $s = \#)$ in $r + \#)$ in $t + 1$
$\#[[$ in $s = \#[[$ in $r + \#[[$ in $t + 1$
so $s = \text{by } P(r) + \text{by } P(t)$
so $P(s)$ is true construct case is OK

so by struct. induct. $M \subseteq EQ$

QED
The 18.01 Functions, F18

The set F_{18} of functions on \mathbb{R}:
- $\text{Id}_{\mathbb{R}}$, constant functions, and $\sin x$
 are in F_{18}.

if $f, g \in F_{18}$, then
- $f + g$, $\cdot g$, e^f (the constant e)
- the inverse, f^{-1}, of f, and
- $f \circ g$ (the composition of f and g)
 are in F_{18}.

Some functions in F_{18}:
- $-x = (-1) \cdot x$
- $\sqrt{x} = (x^2)^{-1}$ ---inverse
- $\cos x = (1 - (\sin x \cdot \sin x))^{1/2}$
- $\ln x = (e^x)^{-1}$

Lemma.

F_{18} is closed under taking derivatives:
if $f \in F_{18}$, then $f' \in F_{18}$

Class Problem

Recursive function on M

Def. $\text{depth}(s)$ for $s \in M$
- $\text{depth}(\lambda) ::= 0$
- $\text{depth}(\,[s]^t):=\max{1+d(s), d(t)}$

Recursive Functions

summary:
- f: Data \rightarrow Values
- $f(b)$ def'd directly for base b
- $f(\text{cnstr}(x))$ def'd using $f(x)$, x
positive powers of two

$2 \in \text{PP2}$

if $x, y \in \text{PP2}$, then $x \cdot y \in \text{PP2}$

$2, 2 \cdot 2, 4 \cdot 2, 4 \cdot 4, 4 \cdot 8, \ldots$

$2, 4, 8, 16, 32 \ldots \in \text{PP2}$

loggy function on PP2

$loggy(2) ::= 1$

$loggy(x \cdot y) ::= x + loggy(y)$

for $x, y \in \text{PP2}$

$loggy(4) = loggy(2 \cdot 2) = 2 + 1 = 3$

$loggy(8) = loggy(2 \cdot 4) = 2 + loggy(4)$

$= 2 + 3 = 5$

$loggy(16) = loggy(8 \cdot 2) = 8 + loggy(2)$

$= 8 + 1 = 9$

loggy function on PP2

$loggy(16) = loggy(8 \cdot 2) = 9$

WAIT A SEC!

$loggy(16) = loggy(2 \cdot 8)$

$= 2 + loggy(8) = 2 + 5$

$= 7$

ambiguous constructors

The Problem: more than one way to construct elements of PP2 from

$\text{cnstrct}(x, y) = x \cdot y$

$16 = \text{cnstrct}(8, 2)$ but also

$16 = \text{cnstrct}(2, 8)$

ambiguous

Team Problems

Problems 1–3