Euclidean Algorithm

--for GCD(a, b)
1. \(x := a, \ y := b. \)
2. If \(y = 0, \) return \(x \) & terminate;
3. else simultaneously:
 \((x, y) := (y, \text{rem}(x, y)) \)
4. Go to step 2.

Euclid Algorithm State Machine

States ::= \(\mathbb{N} \times \mathbb{N} \)
start ::= \((a,b)\)
state transitions defined by

\((x, y) \rightarrow (y, \text{rem}(x, y)) \) for \(y \neq 0 \)

GCD correctness

Example: GCD(662,414)
\[= \text{GCD}(414, 248) \text{ since } \text{rem}(662,414) = 248\]
\[= \text{GCD}(248, 166) \text{ since } \text{rem}(414,248) = 166\]
\[= \text{GCD}(166, 82) \text{ since } \text{rem}(248,166) = 82\]
\[= \text{GCD}(82, 2) \text{ since } \text{rem}(166,82) = 2\]
\[= \text{GCD}(2, 0) \text{ since } \text{rem}(82,2) = 0\]
return value: 2

preserved invariant \(P(x,y) : \)
\[[\text{gcd}(a,b) = \text{gcd}(x,y)] \]

GCD correctness

transitions: \((x, y) \rightarrow (y, \text{rem}(x, y)) \)
\(P \) is preserved because:
\[\text{gcd}(x,y) = \text{gcd}(y, \text{rem}(x,y)) \]
for \(y \neq 0 \)
Proof: \(x = qy + \text{rem}. \)
any divisor of 2 of these 3 terms divides all 3.
GCD correctness

P is true at start:
\[x = a \quad y = b, \text{ so } P(\text{start}) \equiv [\gcd(a,b) = \gcd(a,b)] \]

Conclusion: on termination
\[x = \gcd(a,b) \]
Proof: at termination, \(y = 0 \), so
\[x = \gcd(x,0) = \gcd(x,y) = \gcd(a,b) \]

preserved invariant

GCD Termination

\(y \) decreases at each step
\(y \in \mathbb{N} \) (another invariant)
Well Ordering implies reaches minimum & stops

Derived Variables

A derived variable, \(v \), is a function assigning a “value” to each state:
\[v: \text{States} \rightarrow \text{Values} \]
If \(\text{Vals} = \mathbb{N} \), say \(v \) is “\(\mathbb{N} \)-valued” or “nonnegative-integer-valued”

Robot on the grid example:
States = \(\mathbb{N}^2 \). Define the sum-value, \(\sigma \), of a state:
\[\sigma(x,y) ::= x+y \]
an \(\mathbb{N} \)-valued derived variable

Called derived to distinguish from actual variables that appear in a program.
For robot \(\text{Actual: } x, y \)
\(\text{Derived: } \sigma \)
Another derived variable:
\[\pi := \sigma \pmod{2} \]
\(\pi \) is \(\{0,1\} \)-valued

For GCD, have (actual) variables \(x, y \).
Proof of GCD termination: \(y \) is strictly decreasing & natural number-valued

Termination followed by Well Ordering Principle:
\(y \) must take a least value.
then the algorithm is stuck

\(\sigma \): up & down all over the place
neither increasing
nor decreasing
\(\pi \): is constant
both weakly increasing
& weakly decreasing
Partial-order valued variables

Defs of increasing/decreasing variables extend to variables with partially ordered values.

Team Problems

Problems

1–3