10.34, Numerical Methods Applied to Chemical Engineering
Professor William H. Green

1D-Problem

\[f(x) = 0 \quad Q_{\text{rxn}} \exp(-\frac{E_a}{RT}) + h(T - T_a) + c(T^4 - T_a^4) = 0 \]

unknown: \(T \) of reactor

\[(+) \quad \text{heat of reaction} \]

\[(-) \quad \text{convection} \]

\[(-) \quad \text{radiation} \]

Gain heat

Lose heat

2 steady state temperatures

Make a plot with MATLAB

\[f(T) \]

\[T \]

Figure 1. 1D problem

netheat.m

function qdot = netheat(T)

% computes the net heating rate of a reactor
% qdot = 0 at the steady state

qdot = Q.*exp(-Ea/(R.*T)) + h.*(T-Ta) + c.*(T.^4-Ta.^4);

Q = -2e-5;
Ea = 5000;
R = 1.987;
h = 3;
Ta = 300;
c = 1e-8;

Tvec = linspace(300,3000)
qdot = netheat(Tvec)
plot(Tvec,qdot)

Figure 2. Professor Green modified variables \(Q \) and \(c \) until the plot looked like the one above. Increased \(Q \) and decreased \(c \).

To solve for steady state zeros

\[f(T) = 0 \]

Figure 3. Have computer bracket in and find small range where plot goes from negative to positive.

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Bisection

Start \(a, b\) such that \(f(a) < 0\) and \(f(b) < 0\). Let \(x = \frac{a + b}{2}\). If \(f(x) \cdot f(a) > 0\), then \(a = x\); otherwise, \(b = x\).

This is a problem of TOLERANCE if \((b-a) < \text{tol}\) stop.

Absolute tolerance
- atol: has units
- if \(|f(x)| < \text{atol} \cdot f\) has to be BIG number

Relative tolerance
- rtol: if \((b-a) < \text{rtol} \cdot |a|\)

In MATLAB

```matlab
function x = bisect(f,a,b,atolx,rtolx,atolf)
% solves \(f(x) = 0\)
while abs(b-a) > atolx
    x = 0.5*(b+a);
    if((feval(f,x)*feval(f,a)>0)
        a=x;
    else
        b=x;
    end
end
```

Command Window

```matlab
x = bisect(@netheat,300,2000,0.1,0,0)  
x = 1.2373e+003
```

CHECK: netheat(1237) = -1.0474

Keep in mind: never get actual solution, but can come close.

We can change tolerances to improve results.

```matlab
x = bisect(@netheat,300,2000,0.1,1e-2,0.5) 
x = 1.2363e+003
```

looser tolerance gives less accurate answer

Figure 4. Function must be continuous.

- Bisection cuts interval by 2 each time.
Every time we cut 3 times, we lose a sig fig

In bisection, time grows linearly with the number of significant figures.

\[a < x^{\text{true}} < b \]
\[x^{\text{true}} = x^{\text{soln}} \pm b-a/2 \]

Newton’s Method (1-D)

![Graph showing Newton's Method](image)

evaluates slope of \(f(x) \)

next guess is the \(x_{\text{new}} \) that satisfies \(f(x_{\text{new}})=0 \)

for a line from \(f(x_{\text{guess}}) \) with the slope at \(f(x_{\text{guess}}) \)

Figure 5. Newton's Method.

\[
f(x) = f(x_0) + f'(x_0)(x-x_0) + O(\Delta x^2)
\]

\[
0 = f(x_{\text{guess}}) + f'(x_{\text{guess}})(x-x_{\text{guess}})
\]

\[
x^{\text{new}} = x_{\text{guess}} - f(x_{\text{guess}})/f'(x_{\text{guess}})
\]

For a good guess Newton’s method doubles the number of significant figures after every iteration; however, we lose robustness if guess is poor

If \(f'(x_{\text{guess}}) \approx 0 \) -- doesn’t work

![Graph showing function and its derivative](image)

Figure 6. NO intersection

Another drawback is one needs a derivative of the function.

Secant Method

same as Newton’s, but uses \(f'(x) \) approximate

\[
f_{\text{approx}}(x) = f(x^{[k]}) - f(x^{[k-1]})/x^{[k]} - x^{[k-1]}
\]

Bi-section method works only for 1D problems, but *Newton/Secant* can be used for problems with greater dimension
Broyden's Method (Multi-dimensional)

\[F(x) = F(x_0) + J(x_0) \cdot (x - x_0) \]

Method breaks down when \(J \) is singular

\[\sum_j \left(\frac{\partial f_i}{\partial x_j} \right)_{x_0} (x_j - x_{0,j}) \]

\(f(x) = 0 \)

approx \(J = B \)

outer product is opposite of dot product

\[B^{[k+1]} = B^{[k]} + \frac{F(x^{[k+1]}) \cdot (x^{[k+1]} - x^{[k]})^T}{\| \Delta x \|^2} \]

Outer Product:
\[
\begin{pmatrix}
F_1 \Delta x_1 & F_1 \Delta x_2 & F_1 \Delta x_3 & \cdots \\
F_2 \Delta x_1 & F_2 \Delta x_2 & F_2 \Delta x_3 & \cdots
\end{pmatrix}
\]

Newton's Method (Multi-dimensional)

\[O = F(x_0) + J(x_0) \cdot (x - x_0) \]

\[\frac{1}{LU} \Delta x = -F(x_0) \]

\[\frac{1}{LU} B^{[k]} \Delta x = -F \]

\[LU = LU^{[k+1]} \] without redoing factorization

Done in detail in homework problem.