Functional Approximation

(Variables are scalar in this example)

\[f(x) \approx \sum_{n=0}^{N} c_n \phi_n(x) + \Delta(x) \]

Figuring out \(\Delta(x) \) is similar to solving whole problem

Increase \(N \) until function converges

\(\{ \varphi_n(x) \} \) favorite set of functions

\(\{ \mathbf{v}_n \} \) favorite set of vectors

\[\mathbf{w} \approx \sum_{n=0}^{N} c_n \mathbf{v}_n \quad N < M \]

\[\mathbf{v}_n \in \{ \mathbb{R}^m \} \]

Basis: \(\mathbf{e}_i = \sum_{n=0}^{N} d_{i,n} \mathbf{v}_n \)

\[\mathbf{w}_{\text{approx}} \approx \sum_{n=0}^{N} c_n \mathbf{v}_n = \sum_{i} a_i \mathbf{e}_i = \sum_{i,n} a_i d_{i,n} \mathbf{v}_n \]

\(\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij} \Rightarrow \text{orthonormal} \)

\(\mathbf{c} = \mathbf{a}^T \mathbf{D} \)

We want to do the same with functions. How do you take dot product?

Define \(\langle \varphi_m, \varphi_n \rangle = \int_\text{range of } x g(x) \varphi_n(x) \varphi_m(x) \text{dx} \)

“works”: \(\langle \varphi_m, \varphi_n \rangle = \delta_{mn} \)

1) We chose a basis \(\{ \varphi_n(x) \} \) and an inner product

orthonormal: \(\langle \varphi_m, \varphi_n \rangle = \delta_{mn} \)

2) We’re trying to solve \(\hat{f}(x) = q(x) \) \n
("In most problems, these are all vectors, unknown but that looks too scary to start with")
Look for solutions: \(f^{\text{unknown}}(x) \approx \sum c_n \phi_n(x) \)

\[
\int_a^b dx \ g(x) \phi_m^*(\lambda) [\hat{O} f(x)] = \int_a^b dx \ g(x) \phi_m^*(x) q(x)
\]

solution will depend on \(a, b, c_n, m \).

Range favorite

\[
F(a, b, c_n, m) = \psi(m, a, b)
\]

\[
F(c_n, m) = \psi(m)
\]

Now solve for \(c_n \).

If \(\hat{O} \) is a linear operator:

\[
\hat{O} f^{\text{approx}}(x) = \hat{O} \sum c_n \phi_n(x) = \sum c_n (\hat{O} \phi_n)
\]

and if \(\hat{O} \phi_n = \lambda_n \phi_n \) (i.e. \(\phi_n \) is an eigenfunction of \(\hat{O} \))

\[
\hat{O} f^{\text{approx}}(x) = \sum c_n \lambda_n \phi_n(x)
\]

\[
\int_a^b dx \ g(x) \phi_m^* \sum c_n \lambda_n \phi_n = \sum c_n \lambda_n \int_a^b dx \ g(x) \phi_m^* \phi_n
\]

\[
\int_a^b dx \ g(x) \phi_m^* \hat{O} f^{\text{approx}} = \sum c_n \lambda_n \delta_{mn} = c_m \lambda_m
\]

\[
c_m = \frac{1}{\lambda_m} \int_a^b dx \ g(x) \phi_m^* (x) q(x)
\]

\[
\hat{O} = \left[k \frac{\partial^2}{\partial x^2} + h(x) \right] T(x)
\]

Often this is the operator

\[
\sin \quad \cos
\]

are eigenfunctions

Gives you a really messy equation:

Suppose \(\hat{O} = \hat{O}_1 + h(x) \) \{i.e. Schrodinger Equation\}

Suppose \(\hat{O}_1 \phi_n = \lambda_n \phi \)
\[\int_a^b dx \ g(x) \phi_m^* (x) \hat{\phi}^{approx} = c_m \lambda_m + \int_a^b dx \ g(x) \phi_m^* (x) h(x) \sum c_n \phi_n (x) \]

\[\sum c_n \int_a^b dx \ g(x) \phi_m^* (x) h(x) \phi_n (x) \]

\[H_{mn} \]

\[c_m \lambda_m + \sum c_n H_{mn} = b_m \]

\[(H+\Lambda)c = b \quad m=1,...,N \]

\[\Lambda_m = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \]

Must evaluate integrals \(H_{mn} \): difficult to evaluate, quantum mechanics requires 6-dimensional integrals. \(H \) becomes a large matrix when \(n \) gets large.

Also have Boundary Conditions: \(f(x = 0) = f_0 \)

adds another equation:

\[\sum c_n \phi_n (x = 0) = f_0 \]

\[\forall \cdot c = f_0 \]

How to solve? Can try to fit by least squares and just fit all the equations approximately. Can drop larger \(n \) terms to leave space for boundary conditions. Another way would be to not consider the boundary conditions and then craftily choose \(\Phi_n \) so that they solve the boundary conditions.

To check if answer makes sense: write out the series and see if \(c_n \) converges

Evaluate Residuals

\[R = \hat{\phi} f - q \]

\[\max(R) < \text{tol?} \]

\[||R(x_i)|| < \text{tol?} \]

we will evaluate this later