15.053 Tuesday, April 24

Integer Programming Formulations 2
What chiefly characterizes creative thinking from more mundane forms are (i) willingness to accept vaguely defined problem statements and gradually structure them, (ii) continuing preoccupation with problems over a considerable period of time, and (iii) extensive background knowledge in relevant and potentially relevant areas.

-- Herbert Simon
Overview of lecture

- First half of lecture:
 - more logical constraints
 - non-linearities

- Second half of lecture
 - classic combinatorial problems
 - set covering
 - facility location
 - graph coloring
 - exam scheduling
Logical Constraints with non-binary variables

Variables: x_1, x_2, x_3, are non-negative integers

$x_1 \leq 10$ or $x_2 \geq 25$ or both

Assume that $x_1 \leq 100$. We need an upper bound.

Create a variable w_1 with the following properties:

| If $w_1 = 1$, then $x_1 \leq 10$; |
| If $w_1 = 0$, then $x_2 \geq 25$; $w_1 = 0$ or 1. |

$x_1 \leq 9 + 91(1-w_1)$
$x_2 \geq 25 - 25w_1$

<table>
<thead>
<tr>
<th>$w_1 = 1$</th>
<th>$w_1 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 \leq 9$</td>
<td>$x_1 \leq 100$</td>
</tr>
<tr>
<td>$x_2 \geq 0$</td>
<td>$x_2 \geq 25$</td>
</tr>
</tbody>
</table>
“Or-constraints” in general.

\[ax \leq b \, \text{ or } \, cx \geq d \, \text{ or both} \]

Let \(M_1 \) and \(M_2 \) be integers so that
\[ax \leq M_1 \, \text{ and } \, cx \geq M_2 \, \text{ in any feasible solution.} \]

Typically \(M_1 \) is very large, and \(M_2 \) is “very negative”

If \(w_2 = 1 \), then \(ax \leq b \);
If \(w_2 = 0 \), then \(cx \geq d \); \(w_2 = 0 \) or 1.

\[
\begin{align*}
ax \leq b + (M_1 - b)(1-w_2) \\
cx \geq d + (M_2 - d) w_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>(w_2 = 1)</th>
<th>(w_2 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ax \leq b)</td>
<td>(ax \leq M_1)</td>
</tr>
<tr>
<td>(cx \geq M_2)</td>
<td>(cx \geq d)</td>
</tr>
</tbody>
</table>
Another example

Assume $x_1 \leq 100$ and $x_2 \leq 200$.

Translation:

\[
| x_1 - x_2 | \geq 10 \\
or x_2 - x_1 \geq 10
\]

Note:

\[
x_1 - x_2 \geq -200 \\
x_2 - x_1 \geq -100
\]

If $w_3 = 1$, then

\[
x_1 - x_2 \geq 10 + x_2 - x_1 \geq
\]

If $w_3 = 0$, then

\[
x_1 - x_2 \geq x_1 - x_2 \geq
\]

Fill in the table

<table>
<thead>
<tr>
<th>$w_3 = 1$</th>
<th>$w_3 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 - x_2 \geq$</td>
<td>$x_1 - x_2 \geq$</td>
</tr>
<tr>
<td>$x_2 - x_1 \geq$</td>
<td>$x_2 - x_1 \geq$</td>
</tr>
</tbody>
</table>
IP and piecewise linear functions.

An NLP formulation

How do we model the function $f(x)$?

Later we will assume that $f(x)$ is part of the objective function, and we will maximize it.

Assume that x is integer valued.

\[
\begin{align*}
 f(x) &= 2x & \text{if } 0 \leq x \leq 3 \\
 f(x) &= 9 - x & \text{if } 4 \leq x \leq 7 \\
 f(x) &= -5 + x & \text{if } 8 \leq x \leq 9
\end{align*}
\]
Version 1: Create Binary Variables

Step 1. Create three binary variables, \(w_1, w_2,\) and \(w_3\)

\[
w_1 + w_2 + w_3 = 1 \\
\text{If } 0 \leq x \leq 3 \text{ then } w_1 = 1 \\
\text{If } 4 \leq x \leq 7 \text{ then } w_2 = 1 \\
\text{If } 8 \leq x \leq 9 \text{ then } w_3 = 1 \\
w_j \in \{0, 1\} \text{ for } j = 1, 2, 3.
\]

Almost works, but we need something else.

Warning, this transformation will be challenging to follow the first time around.
Version 2: Split x into three variables

Step 2. Split x into three variables x_1, x_2, x_3.

If $0 \leq x \leq 3$ then $x_1 = x$; otherwise, $x_1 = 0$.
If $4 \leq x \leq 7$ then $x_2 = x$; otherwise, $x_2 = 0$.
If $8 \leq x \leq 9$ then $x_3 = x$; otherwise, $x_3 = 0$.

$x = x_1 + x_2 + x_3$.
Transformation

\[w_1 + w_2 + w_3 = 1 \]
\[0 \leq x_1 \leq 3 w_1 \]
\[4w_2 \leq x_2 \leq 7 w_2 \]
\[8w_3 \leq x_3 \leq 9 w_3 \]
\[x = x_1 + x_2 + x_3 \]

Last step

\[z = 2x \quad \text{if} \quad 0 \leq x \leq 3 \]
\[z = 9 - x \quad \text{if} \quad 4 \leq x \leq 7 \]
\[z = -5 + x \quad \text{if} \quad 8 \leq x \leq 9 \]

\[f(x) = 2x_1 + (9w_2 - x_2) + (-5w_3 + x_3) \]

\[w_1 + w_2 + w_3 = 1 \]

If \(w_1 = 1 \), then \(0 \leq x_1 \leq 3 \)
If \(w_1 = 0 \), then \(x_1 = 0 \)

If \(w_2 = 1 \), then \(4 \leq x_2 \leq 7 \)
If \(w_2 = 0 \), then \(x_2 = 0 \)

If \(w_3 = 1 \), then \(8 \leq x_3 \leq 9 \)
If \(w_3 = 0 \), then \(x_3 = 0 \)

\[x = x_1 + x_2 + x_3 \]
Another non-linear function

$$z = 2x_1 + 5x_2 + f(x_3)$$

$$f(x_3) = \begin{cases}
1 & \text{if } 0 \leq x_3 \leq 2 \\
4 & \text{if } 3 \leq x_3 \leq 6 \\
x_3 & \text{if } 7 \leq x_3 \leq 10
\end{cases}$$

$$w_1 + w_2 + w_3 = 1$$

$$x_3 = x_{31} + x_{32} + x_{33}$$

If $w_1 = 1$, then $0 \leq x_{31} \leq 2$
If $w_1 = 0$, then $x_{31} = 0$

If $w_2 = 1$, then
If $w_2 = 0$, then $x_{32} = 0$

If $w_3 = 1$, then
If $w_3 = 0$, then $x_{33} = 0$

$$w_1 + w_2 + w_3 = 1$$

$$x_3 = x_{31} + x_{32} + x_{33}$$

$$0 \leq x_{31} \leq 2w_1$$

$$\leq x_{32} \leq$$

$$\leq x_{33} \leq$$

$$z = 2x_1 + 5x_2 +$$
On representing non-linear functions

- Integer programs can represent piecewise linear functions of one variable. They cannot represent non-linear functions with “curves.”

- But they can nearly model non-linear functions with curves. One can create a piecewise linear function that is close to the original function.
Mental Break

- MIT Jeopardy
053 Chocolates

Cleaver, Nooz, Ollie, and Tim have started a firm called 053 chocolates.

Slogan: “053 chocolates are optimum.”

Cleaver wants to ensure that everyone has easy access to the chocolates, and so requests that every district has an 053’s or is next to a district with an 053’s.

Nooz wants to minimize the number of 053 stores to satisfy the “covering constraints.” How can we satisfy the both Nooz and Cleaver?
053 Chocolates

Locate 053 Chocolate stores so that each district has a store in it or next to it.

Minimize the number of stores needed.
How do we represent this as an IP?

\[x_j = 1 \text{ if set } j \text{ is selected} \]
\[x_j = 0 \text{ otherwise} \]

Variables

Minimize \(x_1 + x_2 + \ldots + x_{16} \)

Objective

s.t. \(x_1 + x_2 + x_4 + x_5 \geq 1 \)

\[x_1 + x_2 + x_3 + x_5 + x_6 \geq 1 \]

\[x_{13} + x_{15} + x_{16} \geq 1 \]

\(x_j \in \{0, 1\} \text{ for each } j. \)

Constraints
Representation as Set Covering Problem

<table>
<thead>
<tr>
<th>#</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2, 4, 5}</td>
</tr>
<tr>
<td>2</td>
<td>{1, 2, 3, 5, 6}</td>
</tr>
<tr>
<td>3</td>
<td>{2, 3, 6, 7}</td>
</tr>
</tbody>
</table>

The diagram shows a set cover problem with elements 1 to 16. Each element is covered by at least one subset.
Set covering Problem

Let $S = \{1, 2, ..., n\}$, and suppose $S_j \subseteq S$ for each j. We say that index set J is a cover of S if $\bigcup_{j \in J} S_j = S$.

Set covering problem: find a minimum cardinality set cover of S.

Application to locating fire stations.
Locating hospitals.
Locating Starbucks
and many non-obvious applications.
More Integer Programming Formulations

- Facility Location Problems
- Graph Coloring
- Exam Scheduling
053 Chocolates Location

- 6 customers.
- 3 possible locations for chocolate stores

What is the best location for two chocolate stores so as to minimize total distance to customers?
Distances from possible chocolate stores to customers

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Formulation as an IP

Variables

\[y_j = \begin{cases}
1 & \text{if store } j \text{ is opened} \\
0 & \text{otherwise}
\end{cases} \]

\[x_{ij} = \begin{cases}
1 & \text{if customer is served by store } j \\
0 & \text{otherwise}
\end{cases} \]

Objective

\[\sum_i \sum_j d_{ij} x_{ij} = 4 x_{1A} + 2 x_{1B} + 6 x_{1C} + x_{2A} + \ldots \]

Constraints

\[x_{iA} + x_{iB} + x_{iC} = 1 \text{ for } i = 1 \text{ to } 6 \]

\[x_{ij} \leq y_j \text{ for } i = 1 \text{ to } 6, \text{ and } j = A, B, C \]

\[y_A + y_B + y_C = 2 \]

\[x_{ij} \in \{0, 1\} \text{ for all } i, j; \quad y_j \in \{0, 1\} \text{ for all } j \]
Open warehouses so as to minimize the total cost of doing business
Location problems

- Locations: (Warehouses, or stores, or sites, or internet routers or …) need to be opened
- Customers need to be served
- A customer cannot be served by a location unless the location is opened

- Variants:
 - there may be a cost for opening a location
 - customers in some problems may be served by more than one location
 - There may be a capacity on how much is stored at the warehouse.
This is a map of the counties in Colorado. Is it possible to color the counties with 4 colors so that no counties with a common border have the same color?
Here is a four coloring of the map.
Exercise: write an integer program whose solution gives the minimum number of colors to color a map.

Key choice: what are the decision variables?
The Integer Programming Formulation
An Exam Scheduling Problem

The University of Waterford has to schedule 500 exams over two weeks. The objective is to schedule the exams in the fewest number of periods so that no person has to take two exams at the same time.

\[G = (N, A) \]

\[N = \{1, 2, 3, \ldots n\} \quad \text{set of exams} \]

\[A = \text{set of arcs.} \]

\[(i, j) \in A \quad \text{if a person needs to take exam } i \text{ and exam } j. \]

How would one model this as an integer program?
Another Exam Scheduling Problem

G = (N, A)
N = \{1, 2, 3, \ldots \, n\} \text{set of exams}

There are m exam periods.

A = \text{set of arcs.}
 (i, j) \in A \text{ if a person needs to take exam } i \text{ and exam } j.

let \(c_{ij} \) = the number of persons who need to take exam i and exam j.

Suppose that there are exactly m exam periods.

Formulate the problem of minimizing the number of people in total who are taking two exams at the same time.
The IP formulation

Let \(x_{ik} = \begin{cases} 1 & \text{if exam i is scheduled in period k} \\ 0 & \text{otherwise} \end{cases} \)

Let \(y_{ij}^k = \begin{cases} 1 & \text{if exams i and j are scheduled in period k} \\ 0 & \text{otherwise} \end{cases} \)

Minimize \(\quad \)

subject to \(x_{ik} + x_{jk} \leq y_{ij}^k + 1 \) for all i, j
Summary of Integer Programming

- Integer Programs can model an amazing number of different things.
 - linear constraints
 - logical constraints
 - non-linearities

- It can be challenging to model

- It can be challenging to solve

- Next lectures: how to solve IPs